
OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

Open Applications Group
Best Practices and XML Content for Everywhere-to-Everywhere Integration

.

OAGIS 8.0
Design Document

Authors:
Michael Rowell,
Mark Feblowitz

Editors:

Kurt Kanaskie
Mark Feblowitz
Andrew Warren
Michael Rowell
David Connelly

Document Number: 20021024-1

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

2

NOTICE

The information contained in this document is subject to change without notice.

The material in this document is published by the Open Applications Group, Inc. for
evaluation. Publication of this document does not represent a commitment to implement
any portion of this specification in the products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
OPEN APPLICATIONS GROUP, INC. MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Open Applications Group, Inc. shall not be liable for errors contained herein
or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

This document contains proprietary information, which is protected by copyright. All
Rights Reserved. No part of this work covered by copyright hereon may be reproduced
or used in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems—without
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is
subject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data
and Computer Software Clause at DFARS 252.227.7013.

Copyright 2002 by Open Applications Group, Incorporated

For more information, contact:
Open Applications Group, Inc.
1950 Spectrum Circle, Suite 400
Marietta, Georgia 30067 USA
Telephone: 1.770.980.3418
Fax: 1.770.234.6036
Internet: http://www.openapplications.org

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

3

Table of Contents

1.0 Overview ...6

2.0 Overall Design ..8

2.1 Design Principles ... 8
2.2 Changes from OAGIS 7.x .. 9
2.3 OAGIS 8 New Features ... 10

3.0 Updates to OAGIS ..12

3.1 Naming Conventions.. 12
3.2 Update OAGIS Restrictions ... 13
3.3 Update Constructs and Terminology ... 13
3.4 Address Non-Determinism... 15

3.4.1 The Non-Determinism Problem in a Nutshell 15
3.4.2 Addressing the Non-Determinism.. 16

4.0 Design Considerations for OAGIS 8.0 in XML Schema.......................18

4.1 XML Schema and Types.. 19
4.2 OAGIS 8.0 and XML Schema Types ... 20

4.2.1 Modeling of OAGIS BODs using XML Schema Best Practices 21
4.2.2 Blurring of Fields and Compounds .. 23
4.2.3 "OAGIS-Extensible" Elements ... 24
4.2.4 Typing Components... 24
4.2.5 Representation of Nouns... 24
4.2.6 Narrowing Nouns... 26
4.2.7 Shared Abstract Types .. 26

4.3 XML Schema Substitution Groups and OAGIS 8.0 Extensibility 27
4.4 XML Schema Namespaces and OAGIS 8.0 .. 29

4.4.1 Overview of XML Schema Namespaces ... 29
4.4.1.1 Default Namespaces ..31
4.4.2 OAGIS 8.0 and Namespaces .. 32
4.4.2.1 Off-the-Shelf OAGIS and Namespaces ..32
4.4.2.2 Extended OAGIS and Namespaces ...33
4.4.2.3 Extended OAGIS Namespace(s) Example.....................................33

4.5 Extensions to OAGIS ... 36
4.5.1 Design Goals for OAGIS Extensibility.. 37
4.5.2 UserArea Extensibility.. 38
4.5.3 Overlay Extensibility .. 39
4.5.4 Enumerations Inextensibility .. 42

4.6 Value-sets and Validation .. 44
4.7 Semantically-Named Element Sets ... 46

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

4

4.8 File Organization.. 51
4.9 Self-Documenting Schemas .. 51
4.10 Validation Beyond XML Schema Validation... 52
4.11 Parser & Tool Compatibility ... 56

5.0 Summary...57

Appendix A – OAGIS 8 XSD Files & Directories...58

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

5

OAGIS 8.0 Design Document

Abstract

This document discusses the design decisions that have been made for
OAGIS 8.0; this includes the design of OAGIS 8.0 itself and the
instantiation of OAGIS 8.0 in XML Schema.

As a widely used eBusiness and Application Integration specification,
OAGIS has evolved and matured since 1996. OAGIS has grown from a
relatively small set of specifications for financial transactions to a diverse,
canonical, horizontal specification consisting of approximately 200 BODs.

As OAGIS has grown and matured, practices have changed and "issues"
have been identified. The design of OAGIS 8.0 – and its instantiation in
XML Schema – together represent a significant modernization of OAGIS.
OAGIS 8.0 has been designed to address many of the shortcomings of
prior OAGIS instantiations, while preserving and building upon the
strengths of the OAGIS specification.

Changes incorporated into OAGIS 8.0 include: improved naming
conventions, removal of content ordering restrictions, resolution of the
"nondeterministic" problem, adoption of current "best practices" in XML
modeling and representation, improvements to UserArea extensibility, and
the addition of overlay extensibility, which allows users to extend OAGIS
to create industry/vertical overlays and company-specific adaptations.

This document identifies the key issues addressed by OAGIS 8.0 and
describes the design principles, architecture scope, and additional content
that are present in OAGIS 8.0.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

6

1.0 OVERVIEW

As a widely used eBusiness and Application Integration specification,
OAGIS has evolved and matured since 1996. OAGIS has grown from a
relatively small set of specifications for financial transactions to a diverse,
canonical, horizontal specification consisting of approximately 200 BODs.
As OAGIS has grown and matured, practices have changed and "issues"
have been identified. OAGIS 8.0 has been designed to address many of
the shortcomings of prior OAGIS instantiations, while preserving and
building on the strengths of the OAGIS specification.

Some of the shortcomings of OAGIS stem from the evolution process itself
– as new BODs were added over time, new content was discovered and
added. Older BODs that carried related content were not always updated,
since they were already deployed and functioning. This has led to a
degree of inconsistency among related BODs, BODs that should be
carrying the same content.

However, most of OAGIS' current shortcomings are due to design
practices and technical limitations that were in place during OAGIS' early
history – naming conventions, architectural practices, XML representation
conventions, etc. A major portion of the learning curve for OAGIS is
devoted to learning how to represent the simplest things – dates, times,
quantities, etc. Most of these challenges are due to limitations of XML 1.0
DTDs, OAGIS' prior instantiation base. The inability to easily add content
to related BODs was the direct result of inadequacies in how DTDs
represent reusable types.

The design of OAGIS 8.0 – and its instantiation in XML Schema – together
represent a significant modernization of OAGIS. This design endeavors to
repair many longstanding problems with prior OAGIS instantiations, and to
normalize many of the related BODs that were designed at different times
and with inconsistent representations.

The goals for the OAGIS 8.0 redesign include:

1. Modernize OAGIS - The need to modernize the design of OAGIS as
indicated by End Users and Solution Providers feedback.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

7

2. Address the "Non- Deterministic Issue" – The need to strengthen the
XML validation of the correct structure and content of an OAGIS model
(which was primarily due to the weak typesystem available in XML DTDs).

3. Address requests for long-tag names – A common practice at the time
OAGIS was originally designed was to use short tag names to reduce the
amount of overhead imposed on the message. Today, most applications
of XML make use of unabbreviated tag names. OAGIS has been criticized
for not modernizing the legacy-based all-uppercase, heavily abbreviated
names.

4. Provide better vertical extensions capabilities; address the inability to
cleanly represent particular verticals' overlays onto OAGIS - While it is
possible to extend OAGIS, these extensions have been relegated to the
USERAREA. This leaves the user of a vertical overlay with the impression
that the verticals' extensions are not part of the specification.

5. Support XML Schema – OAGIS needs to support W3C's XML Schema
Recommendation (2 May 2001), and to use the expanded
representational capabilities to address some of the key representational
issues in OAGIS.

When polled, the constituency of the Open Applications Group felt that these
issues must be addressed in order for OAGIS to continue to be recognized as
a leading specification for integration in industry.

This modernization is necessary to enable OAGIS users to efficiently deploy
OAGIS BODs and to extend OAGIS to create industry/vertical overlays and
company-specific adaptations.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

8

2.0 OVERALL DESIGN

The following are the design principles, architecture scope and
deliverables for the design of OAGIS 8.0.

2.1 Design Principles

These design principles are core to what has made OAGIS successful
over the years and key to how OAGIS will continue to be successful.

1. No feature regression!

2. Keep it simple!!

3. Retain existing conventions where possible for end user familiarity

4. Add support for XML Schema, but stay away from ambiguous
features of XML Schema

5. Retain independence of OAGIS from the instantiations of OAGIS

6. Retain and expand extensibility

7. Limit new application functionality

8. Define migration path for users.

Many see OAGIS’ saving grace as its ability to be extended to meet the
needs of the customers, vendors, and trading communities that make use
of it. For this reason, it is critical that OAGIS maintain it’s Extensible
Content Model and where necessary expand upon it in order to facilitate the
requirements of the vertical industries, without breaking the return-on-
investment of having a canonical content model that an enterprise can use.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

9

2.2 Changes from OAGIS 7.x

The primary goals for OAGIS 8.0 are to address the issues raised in the
previous section while adhering to the above design principles, making
use of prevailing standards where applicable.

1) Address the "non-deterministic issue." (see section 3.4 Address
Non-Determinism)

2) Use long tag names.
a) Use the OAGIS long names currently listed in Appendices C

and D. An example of this would be to replace ACCTTYPE with
AccountType

b) Change capitalization to ISO 11179 – Upper CamelCase for
elements, lower camelCase for attributes.

c) Tag names may be any length but require OAGI technical
approval for any name over 31 characters.

3) Convert to XML Schema (see section 5.0 XML Schema
Instantiation)

4) Change the name of the Control Area to ApplicationArea
a) Eliminate Code Page tag from ApplicationArea
b) Eliminate Language tag from ApplicationArea
c) Add Digital Signature to ApplicationArea

5) Acknowledging that not all parties to a transaction are engaged as
partners, change Partner to Party. Create new constructs to
represent Party information and Party types, and to refer to a
specific Party.

6) Support other standards where applicable
a) This includes the use of ISO standards, where applicable. For

example use of ISO DateTime format
b) Others, where applicable

7) Update the use of OAGIS terminology
a) Data Types will become Components.
b) Segments will become Compounds.

8) Improve the extensibility of the OAGIS UserArea.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

10

9) Provide migration tools for customers. If feasible, use XSL style
sheets to convert from DTD/XML to Schema XML.

10) Remove the pre-OAGIS 8.0 content ordering restrictions; instead,
allow elements to appear in a Component in a more natural order.

11) Defect Removal

2.3 OAGIS 8 New Features

1) Provide the ability, where appropriate, to precisely type the values
that occur within a field or attribute. In many instances it may be
preferable to allow for flexibility for the values that may occur. This
must be determined consistently, and thus requires OAGIS to
establish well defined and repeatable representation practices for
defining and applying types.

2) Provide an extensible equivalent to enumeration types; allow
OAGIS extenders to provide additional values, e.g., Party types
(CustomerParty, SupplierParty, ShipToParty, etc.), and have those
values be validated by an XML Schema validating parser.

3) Provide verticals with the ability to define extensions to OAGIS
such that the added content appears as sibling elements to
OAGIS-defined fields, compounds, and components (not just
relegated to a UserArea).

4) Prevent name collisions and "naming bloat"1 by using namespaces
to distinguish among names from different domains (names in
OAGIS, in and overlay, in a company-specific extension, etc.).

5) Provide a mechanism to maintain a consistent representation of
the Noun content across a family of BODs. That is, any content
that is available in one specific noun, e.g., PurchaseOrder, is
available in all PurchaseOrder BODs (ProcessPurchaseOrder,
SyncPurchaseOrder, CancelPurchaseOrder,…). Specifically, this
is achieved by creating a full definition for each Noun (everything
that any PurchaseOrder might contain), and allowing the unique

1 Namespace bloat is where simple names, e.g., Address, are pre/post-pended with
disambiguating information, e.g., STARDeliveryNeedByDateTimeAny

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

11

requirements for each BOD (each PurchaseOrder BOD) to be
expressed as XSL-encoded constraints. These constraints can be
enforced by any standard XSL processor.

6) Provide a mechanism whereby elements of similar type share
content in a uniform way; for example, where all Document share
the same Document identifiers, etc., where all Orders share the
same kind of order-specific content (unit price, total price,
description, item identification, etc.). This is achieved by
recognizing Nouns, etc., of the same type and defining a common
type base that is to be shared among the elements.

7) Factor Verb content from Nouns; verb-specific Noun content (verb-
oriented parameters, etc) is now represented as a part of the Verb,
simplifying Noun definitions.

8) Add the ability to provide vertical extension overlays. This will allow
a vertical to add additional information that provides additional
information or detail for their overlay. These overlays will be
defined through continuing to work closely with other industry
verticals. These “Vertical overlays” will build on the OAGIS XML
Schema instantiation and be provided as separate namespaces in
order to distinguish new elements and element types.

9) In order to take advantage of the advanced typing system available
in XML Schema and with the desire to keep these extensions
simple OAGIS 8.0 will make use of XSL to provide runtime
constraints of the required fields. This allows OAGIS to be
extended easily while taking advantage of a very reach and
flexible constraint mechanism. Without adopting a completely open
content model.

10) Maintain an acceptable level of performance for use of the BOD
.xsd files (XML Schema Definition files) with the dominant XML
tools available on the market.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

12

3.0 UPDATES TO OAGIS

In order to achieve the scope identified in the previous section, while
following the design principles provided. The following updates will be
made to OAGIS:

3.1 Naming Conventions

In order to be consistent with current practice the Open Applications
Group has adopted full (long) tag names, in accordance with the long
names documented in Appendices C and D of OAGIS 7.2.1. As an
exception to the use of long tag names, a small number of widely
accepted abbreviations have been adopted, e.g., Id for Identifier. In
general, readability and consistency are best preserved when
abbreviations are kept to a minimum.

OAGIS 8.0 element, type, and attribute names have been capitalized in
accordance with ISO standard 11179, using UpperCamelCase for
elements and lowerCamelCase for attributes. Examples of these long
element names are: EffectivePeriod, and AccountType. Examples of the
long attribute names are: entryDateTime, owner, etc.

For abbreviations the naming-convention is as follows:

For element names and type names:
 The first letter of each abbreviated word should be

capitalized
o UnitOfMeasure will be abbreviated UOM

 The second and subsequent letters of each abbreviated
word should appear in lower case
o Identifier will be abbreviated Id
o Indicator will be abbreviated Ind

For Attribute names:
 All abbreviated words at the beginning of an attribute name

would appear in lower-case.
o UnitOfMeasure would be uom (uOM just doesn't look

right).

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

13

3.2 Update OAGIS Restrictions

Update OAGIS to remove restrictions that are no longer needed or to
redefine restrictions where warranted. These include:

1) No longer require that every field or compound be present in the
ApplicationArea. The only required element in the ApplicationArea
is the Creation DateTime.

2) Remove the OAGIS restriction to have the elements appear in a
certain order within a Component, but instead allow them to appear
in a more natural order. Pre-OAGIS 8.0 ordering restrictions are
removed: segments/compounds no longer need to precede fields;
segments/compounds no longer need to precede optional
segments/compounds; required fields need not precede optional
fields; no alphabetical ordering is imposed.2

3) Remove the restriction that all fields defined within a
segment/compound must occur for each occurrence of the
segment/compound. This will allow for useful/meaningful subsets,
which can be explicitly defined or restricted using OAGIS content
constraints.

3.3 Update Constructs and Terminology

As indicated in the OAGIS 8.0 Design section of this document, OAGIS
8.0 will update some of the OAGIS constructs and terminology:

1) The Control Area has been renamed to the Application Area; as a
result the CNTROLAREA tag has been changed to
“ApplicationArea”.

2) The ApplicationArea has been made generic and uniform across all
BODs. Any BOD-specific content that once appeared as a part of
the CNTROLAREA has been relocated to the BOD element itself
(as attributes) or to the respective Noun or Verb element in the
DataArea.

2 Note that once a particular ordering of fields and/or components has been defined in the
schema, ordering of content within the XML instance must correspond to the schema definition.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

14

a. The revision number has been removed from the top-level
element of OAGIS and replaced by a “revision” attribute on
the top level BOD element (see the OAGIS definition of the
BusinessObjectDocument for a definition of what comprises
a BOD).

b. An “environment” attribute has been added to the top-level
element of the BOD with the possible values of “Test” or
“Production”.

c. The BSR segment has been removed from the
ApplicationArea. This information is already captured both in
the name of the BOD element and in the names of the
BOD's Verb and Noun elements, respectively.

3) The Language and Code Page fields have been removed from the
Sender segment. These fields are no longer useful since XML
allows the user to identify a language. This is accomplished as
described at: http://www.w3.org/TR/2000/WD-xml-2e-20000814

4) A “Signature” element has been added to the ApplicationArea in
order to enable digital signature of the entire BOD contents. The
Signature element allows a digital signature to be associated with a
BOD instance. There are several specifications for Digital
Signatures, the Signature element here can be used to carry any of
these.

5) The DataArea now contains elements that identify the BOD's
specific Verb and Noun. For example, the first element in the
DataArea of the "ProcessPurchaseOrder" BOD will be the
"Process" verb element and the second element will be the
"PurchaseOrder" noun element. The Verb element defines or
constrains the action of the BOD, and the Noun element carries the
data.

6) A “UserArea” has been added to the ApplicationArea.

7) ISO DateTime format has replaced the existing DateTime
structures.

Due to theoretical limitations and practical considerations, XML Schema does not allow for the

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

15

8) The OAGIS term segment has been renamed to compound. A
compound is a set of elements and attributes that can be thought of
as one atomic concept, e.g., Amount. Compounds are not
extensible via the OAGIS extensibility methods.

9) The OAGIS term data type has been renamed to component.
Components are the large grained building blocks that are used to
construct/compose Nouns. They group Fields, Compounds and
other Components into extensible groups.

3.4 Address Non-Determinism

Non-determinism can roughly be defined as a situation where, upon
encountering an element in an instance document, it is ambiguous which
path was taken in the schema document.

Ninety percent of the instances of OAGIS non-determinism occur with how
earlier versions of OAGIS segments were represented, due mostly to
limitations of XML DTDs. A deeper explanation of this problem's basis in
type theory is beyond the scope of this document. Suffice it to say that
element non-determinism has been a thorn in the side of many OAGIS
users.

3.4.1 The Non-Determinism Problem in a
Nutshell

In prior versions of OAGIS, fields that relied on segments were named
based on the intended type of a field (e.g., "DateTime"), not based on the
actual name of the thing being described (e.g., "NeedDelivery"). What
would have been the natural name of the field was instead buried in a
"qualifier" attribute. So, instead of modeling the NeedDelivery field of a
PurchaseOrderLine as

<PurchaseOrderLine>
 …

<NeedDelivery>…</ NeedDelivery>
 …

</PurchaseOrderLine>

arbitrary ordering of element content in the instance.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

16

it was modeled as

<PurchaseOrderLine>
 …

<DateTime qualifier="NeedDelivery">…</DateTime>
 …

</PurchaseOrderLine>

This was one of the few ways that DTDs could impose the needed
DateTime structure on the NeedDeliveryBy field, so that parsers could do
some (minimal) checking of the content.

The problem arose when more than one field of type DateTime was
needed in a given element model (e.g., more than one DateTime child of a
PurchaseOrderLine):

<PurchaseOrderLine>
 …

<DateTime qualifier="NeedDelivery">…</DateTime>
 …

<DateTime qualifier="PromisedDelivery">…</DateTime>
 …

</PurchaseOrderLine>

The non-determinism exists because there are two different DateTime
elements in the content of the PurchaseOrderLine . When the parser sees
this and can't distinguish one from the other, it raises this as a warning.
Furthermore, since the parse cannot distinguish one from the other, there
is no way for it to require that, e.g., a NeedDelivery is required and a
PromisedDelivery is optional.

The outcome of this is that, prior OAGIS 8.0, OAGIS designers were
limited in what they could express in a given element, and XML parsers
were limited in what structural integrity they could enforced.

3.4.2 Addressing the Non-Determinism

The problem is addressed by promoting the qualifier's value to being (part
of) the element's name, e.g.,

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

17

<NeedDelivery>…</ NeedDelivery>

and by defining the element's model (type).

<element name="NeedDelivery" type="DateTime">…</element>

Now, rather than naming elements according to their types, elements are
named according to their primary meaning, purpose, or function. Thus,
there will no longer be an Amount(Extended)(T). Instead, the element will
be named something like a required "TotalPrice" of type "Amount."3
Furthermore, there can also be an optional "AdditionalCost" of type
"Amount."

With XML Schema's relatively advanced type system, the context of the
TotalPrice element and the binding, in the schema, of TotalPrice to the
type Amount is all that are needed for a validating parser to validate that
the content of a TotalPrice element is indeed an Amount and fits all of the
criteria to be a legal Amount. Parsers can not only distinguish between a
TotalPrice and an AdditionalCost, but can enforce that the former is
required and the latter is optional.

3 In all prior OAGIS releases, the practice of shortening field and segment names resulted in
names that were less meaningful that their full equivalents, and often resulted in names that were
inconsistently abbreviated. OAGIS 8.0 instead uses the long names that have long been
associated with each element, as documented in Appendices C and D. For example
AMOUNT(ESTFREIGHT)(T) in previous releases of OAGIS now uses the intended names, e.g.,
EstimatedFreightCharge.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

18

4.0 DESIGN CONSIDERATIONS FOR OAGIS 8.0 IN XML
SCHEMA

As of May 2001, the W3C released its first recommended version of XML
Schema (W3C XML Schema Recommendation – 02 May 2001). Many
XML users have eagerly awaited Schema's emergence, as did the Open
Applications Group.

Overall, an XML Schema document offers a richer, more expressive, and
more practical means of defining and constraining XML 1.0 instance
documents than did its predecessor, the DTD (Document Type Definition).
Many of the extreme challenges that OAGIS users faced when trying to
represent their business documents in a natural way were due to the
limited capabilities of DTDs, and the tight restrictions that DTDs imposed
on XML instance documents.

As such, OAGIS is committed to remedying these difficulties by using the
advanced expressive capabilities of XML Schema. This section describes
OAGIS' use of XML Schema in representing BODs and supporting data,
and describes the additional capabilities made possible via Schema.

Note that, as a first recommendation, XML Schema will likely evolve. The
May 2001 recommendation is a stable, fixed definition, but the potential for
improvement exists and future recommendations are expected. In fact, at
the time of this writing, the W3C is currently working on XML Schema 1.1.

While XML Schema 1.0 represents a significant advance over DTDs, there
are parts of it that can also be challenging to use, and there are a few
areas where the Schema tool vendors do not fully agree on a joint
interpretation of the recommendation. The Open Applications Group has
endeavored, to the best of our understanding, to avoid these areas, in
order to provide a more stable specification. The Open Applications Group
will track XML Schema as it develops and will adopt new XML Schema
best practices and additional core XML Technologies as they emerge.

Although XML Schema represents a significant advance beyond DTDs,
XML Schema provides neither a complete nor a manageable way to
express all of the necessary type constraints. Several months of

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

19

investigation and experimentation revealed that several of OAGIS' key
design goals were neither fully achievable nor fully enforceable within
version 1.0 of the XML Schema Recommendation. Until such capabilities
become available in XML Schema, other core XML Technologies are
being employed to address this limitation. XSL, in particular, supports the
definition of schema constraints (using standard XPath expressions) that
can be checked using any standard XSL processor; this capability can be
used in conjunction with XML Schema validating parsers, resulting in a
much more comprehensively screened set of BOD instances. OAGIS 8.0
relies on the use of these mature and standard technologies to provide
additional validation support beyond that which is provided in version 1.0
of the XML Schema Recommendation.

OAGIS 8.0 takes advantage of the strengths of each of these core XML
technologies: XML Schema to define the OAGIS grammar and XSL to
define and enforce the constraints that strengthen that grammar.
Together, these technologies offer a sound basis for representing and
enforcing the core OAGIS standard, while also supporting the type of
extensibility that OAGIS users require.

4.1 XML Schema and Types

A key difference between XML DTDs and XML Schema is XML Schema's
advanced type system. In essence, everything defined in an XML Schema
makes use of some kind of type definition, whether it's a built-in simple
type, a user-defined complex type, or a modification of either (by
extension or restriction). Some of the user-defined types are
anonymous – these types are unnamed and apply to only one element –
while others are global – these are named types that are widely
(re)usable, and even extensible or refinable.

XML Schema provides a rich set of built-in standard types (simple types),
covering a breadth of common data types (strings, Booleans, dates,
positive integers, etc.), many based on ISO standards. The existence of
these built-in types (and the ability to validate that they are being adhered
to) means that you don't have to create your own definitions for commonly
used types, and that your applications can count on the data in a type-
constrained attribute or element as being of the defined, commonly-used
type.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

20

By defining an attribute to be of type "xs:dateTime" – that is, the ISO 8601
"dateTime" type as defined in the XML Schema ("xs") namespace – your
application can use a validating parser and then can count on the fact that
the value of the attribute (e.g., 1999-05-31T13:20:00.000-05:00) will
conform to ISO 8601. In addition to being a compact, standard
representation for dateTime, most programming languages know how to
parse the ISO 8601 dateTime, into month, day, year, etc., without
requiring any custom-developed code.

In addition to XML Schema's built-in types, you can also define your own
types, and you can derive new types from other types, either by extension
or restriction. This is a very powerful mechanism; it allows a user to create
types and build upon them or to restrict their usage as needed.

The existence of a type system provides significant expressive power that
was lacking in DTDs. Many of the representation problems encountered
when trying to represent OAGIS using DTDs find themselves easily
resolved using the XML Schema type system. Perhaps the most important
of XML Schema's improved capabilities is its greatly improved
management of names. It uses namespaces to distinguish same-named
concepts from different domains, e.g., boat:deck (from the marine domain,
something that one stands on and sometimes gets wet) versus
games:deck (from the games domain, a pack of cards). And it uses local
names within a namespace to distinguish same-named parts of different
things, e.g., a File's Owner, of type UserId, versus a Dog's Owner, of type
Person. DTDs, on the other hand, operated in a completely flat
namespace, requiring (very) specific names to distinguish each kind of
thing, e.g., FileOwner or DogOwner. With the use of compact, local
names, the XML over the wire becomes less verbose, easier to read and
understand, and, in many cases, easier for applications to process.

OAGIS makes use of these capabilities in order to resolve many of the
persistent modeling issues, and to provide a noun-based representation
that promotes consistency across all of the BODs in a family of BODs.

4.2 OAGIS 8.0 and XML Schema Types

Because of the existence of a type system within XML Schema it is
possible to use the built-in XML Schema simple types for many existing

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

21

OAGIS fields, and to define OAGIS types for other fields, compounds,
components and Nouns. It is also possible to make use of XML Schema
built-in types in place of existing OAGIS compounds for things like
DateTime and to build more structured complex types for things like
Temperature, Party, PurchaseOrders, etc. where needed. By making use
of a type definition for each field, compound, component, and noun, it is
possible to maintain the consistency of the fields and compounds across
all uses of any particular noun or component.

4.2.1 Modeling of OAGIS BODs using XML
Schema Best Practices

The XML Schema Best Practice guidelines from MITRE (authored by
members of the xml-dev list and maintained by Roger Costello)
recommends using what is referred to as the “Venetian Blind approach to
XML Schema Design” when reuse is important. For a detailed explanation
and a comparison of this approach against other approaches, see the
paper at http://www.xfront.com/GlobalVersusLocal.pdf.

Simply put, the Venetian Blind approach emphasizes the creation of
reusable types over the creation of global element definitions. So, rather
than defining a global element called, e.g., "FileOwner" of type
"SystemUser" and "DogOwner of type "Person", the Venetian Blind
approach prefers that we define the (many) types that we need, e.g., the
types FileOwner and DogOwner, that we derive the type FileOwner from
type SystemUser and the type DogOwner from type Person, and that we
bind the correct type to the element "Owner", depending upon the
context. This allows Files and Dogs to have Owners, but ensures that the
correct type of Owner is used in each context:

 <File>
 <Owner userId="sysadmin">…</Owner>
 </File>

and

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

22

 <Dog name="Rover">
 <Owner>
 <Name>
 <FirstName>Mark</FirstName>
 …

 </Name>
 <Address>
 …
 <Address>

</Owner>
<AnswersTo>Here, Fella</AnswersTo>

 </Dog>

Clearly, in the different circumstances, a different type of "Owner" is
warranted for each context.

If instead we use global element definitions to model all child elements (global
element definitions must be uniquely named), we would have to define a
FileOwner global element and a DogOwner global element and alter the File and
Dog element models accordingly:

 <File>
 <FileOwner userId="sysadmin">…</FIleOwner>
 </File>

versus
 <Dog name="Rover">
 <DogOwner>
 <Name>

 <FirstName>Mark</DogOwnerFirstName>
 …
 </Name>
 <Address>
 …
 <Address>
 </Owner>
 <DogAnswersTo>Here, Fella</DogAnswersTo>

 </Dog>

Taken to extremes, this would result in a very complex specification with
very verbose and awkward naming conventions and a very bloated
namespace (not unlike using DTDs).

In addition to aiding the management of names within a single
namespace, the Venetian Blind approach also supports the use of
multiple namespaces. This is highly relevant to OAGIS 8.0, since OAGIS
8.0 lives in a defined namespace, "http://openapplications.org/oagis"
(with a typical namespace prefix of "oa:"), and since vertical and industry
extensions to OAGIS 8.0 will live in their own separate namespaces

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

23

(e.g., namespace "AutomotiveIndustryXML" with prefix "aix:" or
namespace "http://Cc:.com/oagis" with prefix "cc:"). Those curious about
how Venetian Blinds aid in namespace management are encouraged to
read the MITRE article.

OAGIS 8.0 adopts the modified Venetian Blind approach, making heavy
use of type definitions rather than global elements. All of the compounds
and fields, which were once global elements under DTDs, become
elements that make use of types under XML Schema. Their exact
instantiation within a BOD family can occur locally at the Noun. This
allows OAGIS to locally define the elements based on the context of the
usage within a given Noun family of BODs (that is, to locally bind the
element to its appropriate type).

An extreme form of the Venetian Blind approach shuns the use of global
elements entirely, opting instead for local element definitions, global
types, and no use of anonymous types. OAGIS 8.0 follows the Venetian
Blind approach in that it uses no anonymous types in any of its
derivations (and discourages OAGIS users from using anonymous
types). But because OAGIS 8.0 uses substitution groups to support plug-
in extensibility, global elements are used for any OAGIS-extensible
element, i.e., for all Nouns, Noun Components, and Components. Even
so, OAGIS 8.0 requires that each of these global elements be defined
using global types, which preserves most of the benefits of using the
Venetian Blind approach.

4.2.2 Blurring of Fields and Compounds

Because XML Schema provides a type system and a rich set of
predefined types, it is now possible to represent things like dates, times
and the date-time combination using built-in XML Schema data types.
This means that instead of using multiple elements to define DateTime it
is now possible to use a single element to represent a date, or a time or
a date-time combination in ISO 8601 format. Similarly, it is possible to
represent integers, decimals, Booleans, floats, etc. (the full set is
documented at http://www.w3.org/TR/xmlschema-0/#CreatDt).

Because of this some concepts that OAGIS had previously identified as
Segments/Compounds now can be represented as single elements or single

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

24

elements with attributes, thereby blurring the previous distinction of fields and
segments (now called compounds). For example DateTime, in previous releases
has been a segment, now by using the XML Schema dateTime it is a simple
element.

4.2.3 "OAGIS-Extensible" Elements

Only Nouns and Components are defined as being OAGIS-extensible
elements. As such, each is extensible to carry UserArea extensions
and/or overlay extensions. Because this extensibility comes at a cost,
Fields and Compounds have not been made OAGIS-Extensible.
However, standard XML Schema extensions mechanisms can be used
to define new Compound types, based on the existing types.

4.2.4 Typing Components

By converting Component elements into globally usable type definitions,
it is possible to ensure consistency across OAGIS.

It is also possible to identify common component types, e.g., Party,
Address, etc. which can be defined globally and used throughout OAGIS.

4.2.5 Representation of Nouns

Just as Fields, Compounds, and Components are represented as
globally (re)usable types, so are Nouns. By representing Nouns as types,
the consistency of each Noun's definition can be achieved across all
uses of the noun.

Under OAGIS 8.0 in XML Schema, a single, comprehensive Noun
definition is created and used in all relevant BODs. For greatest flexibility
and broadest applicability, all parts of the Noun (its Components, Fields,
and attributes) are declared as being non-required (minOccurs="0" for
elements, use="optional" for attributes). Which of the Noun's
Components, Fields, and attributes are required or optional is defined for
each BOD in a separate Noun-constraint stylesheet and optionally
validated at runtime by applying the stylesheet using any standard XSL
processor.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

25

Nouns that are defined in this manner are referred to as "relaxed," in that
their structure has been defined but all of the minimum occurrence
constraints have been relaxed. In other words, PurchaseOrders have
Headers and Lines, but the relaxed definition says that the Headers and
Lines are not required to be there. Each OAGIS user can decide whether
to define and apply constraining stylesheets (e.g., for the
ProcessPurchaseOrder BOD which requires a Header and at least one
Line), or she/he can instead validate the correctness within his/her
application.

This approach has been taken as an efficient means of ensuring the
uniformity of noun content among all uses of the noun. For example, the
same PurchaseOrder content is available in the ProcessPurchaseOrder
and the GetPurchaseOrder BODs. No special effort is required to ensure
this uniformity.

The OAGIS 8.0 Architecture Team has explored and rejected an
approach that employs XML Schema type derivation by restriction, which
fails to ensure uniformity among Noun uses without imposing severe
maintenance requirements. In short, the mechanism designed to ensure
efficient consistency among uses of a noun is both maintenance-
intensive and prone to becoming inconsistent. This is due to the way in
which XML Schema's derivation by restriction is performed. In order to
define a relaxed model and then subsequently constraint it, one must
derive the constrained ("narrowed") noun "by restriction."

Schema's current derivation-by-restriction mechanism would require that
a noun's entire structure be replicated and constrained. The unpleasant
ramification is that any modifications to the relaxed noun must be
manually reapplied to each constrained noun. So, if a "fully constrained"
PurchaseOrder – derived from the relaxed PurchaseOrder definition –
was defined for ProcessPurchaseOrder (that is, all parts required for
processing are set to minOccurs="1") and a "moderately constrained"
PurchaseOrder were defined for CancelPurchaseOrder (e.g., the OrderId
alone is required), then any changes to the relaxed PurchaseOrder
would also have to be applied to the fully constrained and moderately
constrained copies. This rapidly becomes unwieldy, especially since,
e.g., changes to the abstract type "Order" must also be propagated
among all copies of PurchaseOrder, SalesOrder, etc.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

26

4.2.6 Narrowing Nouns

To achieve specificity for a particular use of a Noun, the type can be
restricted on a Verb-by-Verb basis through the constraints captured in
XPath expressions. Because of this, components e.g., a
RequestForQuote or a PurchaseOrder's Header can have a broad,
relaxed definition (e.g., many fields, all optional) but have specific uses
restricted (or narrowed) by applying the corresponding the XPath-encoded
constraints using a standard XSL processor.

4.2.7 Shared Abstract Types

During the course of OAGIS 8.0 build-out, OAGIS architects identified a
small but significant number of common abstract types. Establishing these
types (e.g., Document and Order) as common base types for several
Nouns and/or Components brings a greater degree of uniformity to these
types. As such, all subtypes of these base types carry the same content,
in the same order with the same attributes and with the same spelling,
capitalization, abbreviations, etc., for all content that is shared in common.

Additionally, any change to the base type will be propagated to each of the
descendent types, ensuring long-term consistency among similar types.
For example, all things that are Orders (PurchaseOrders, SalesOrders,
etc.) share a number of fields, compounds, and components in common.
When a change to one of these is deemed appropriate to all things of type
Order, the change is made to the Order type; thus, all things of type Order
are automatically updated.

This approach to modeling abstract types and concrete subtypes
augments OAGIS' regular means of component assembly. These
complementary approaches (class-subclass and component assembly)
together provide the OAGIS user a rich set of solutions to some of the
more perplexing and/or maintenance-intensive modeling challenges.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

27

4.3 XML Schema Substitution Groups and OAGIS
8.0 Extensibility

XML Schema, while a significant improvement over DTDs, lacks
straightforward support for some key OAGIS features. Chief among them
is the ability to conveniently extend Nouns and Components. Solely using
XML Schema type derivation by extension would impose a mind-boggling
sequence of derivations and namespace manipulations, just to achieve
the simple kind of plug-in extensibility that OAGIS users need. Fortunately,
Schema does provide another mechanism that can be used to implement
OAGIS extensibility: the substitution group.

Using XML Schema substitution groups, it is possible to say that particular
elements of the same type (or similar types) can be substituted, one for
another, anywhere that the substitution group's "head element" is
referenced. For example, if there is a global element Noun (of type Noun)
and there are global elements PurchaseOrder, RequestForQuote, and
SalesOrder (each being of a type derived from the type Noun), and these
new Nouns can be declared to be in the substitution group Noun, then
anywhere that the global element Noun is included in a model, a
PurchaseOrder, RequestForQuote, or ProductionOrder can be substituted
for the Noun element. Moreover, if the Noun element has been declared to
be "abstract", then not only can substituting occur, it must occur.4

Substitution groups can cross namespaces. This allows a user of OAGIS
to extend, for example, the OAGIS PurchaseOrder noun and have their
own PurchaseOrder (in their own namespace) be used in its. This forms
the basis for the OAGIS 8.0 implementation of overlay extensibility.5

To support overlay extensibility for all Nouns, Noun Components, and
Components, each must be implemented as a substitution group. To do
so, each is defined as a global element, with a type that is a globally
defined type. Then, an OAGIS user can extend any OAGIS-extensible
element by creating a new, extended element and adding it to the
substitution group.

4 That is, if the element "Noun" appears in a sequence definition and has been declared abstract,
it cannot appear in that sequence; only one of its substitute elements can.
5 Substitution groups do have limitations. An element can participate in one and only one
substitution group, making it an inadequate mechanism for representing (meta)classes and their
instances (classes). Other restrictions apply. We recommend using this mechanism with caution.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

28

For example, the Noun "PurchaseOrder" is defined as a global element of
type "PurchaseOrder." Any OAGIS user can then extend "PurchaseOrder"
in the following manner:

1. In a new namespace, "myns", create a global type, based on the
OAGIS "PurchaseOrder" type, that extends the OAGIS
PurchaseOrderType:

 <xs:complexType name="PurchaseOrder">
 <xs:complexContent>
 <xs:extension base="oa:PurchaseOrder"/>
 </xs:complexContent>
 </xs:complexType>

2. Add to this extension any additional element content, e.g., a
GrandTotal element:

 <xs:complexType name="PurchaseOrder">
 <xs:complexContent>
 <xs:extension base="oa:PurchaseOrder">
 <xs:sequence>
 <xs:element name="GrandTotal" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

3. Define a global element "PurchaseOrder" in the new namespace,
bind it to the new type, and define it as being in the substitution
group PurchaseOrder in OAGIS:

 <xs:element name="PurchaseOrder" type="myns:PurchaseOrder"
 substitutionGroup="oa:PurchaseOrder"/>

4. In the xml instance document, define an OAGIS
ProcessPurchaseOrder BOD that references the PurchaseOrder
from "myns":

<ProcessPurchaseOrder
xmlns="http://www.openapplications.org/oagis"
xmlns:myns="myNameSpace"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openapplications.org/oagis
 ../OAGIS/BODs/ProcessPurchaseOrder.xsd
 myNameSpace /mynamespace.xsd"
revision="8.0" environment="Test" lang="en-US">

 <ApplicationArea>
 …
 </ApplicationArea>
 <DataArea>
 <Process acknowledge="Always"/>

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

29

 <myns:PurchaseOrder>
 <Header>
 …
 </Header>

 <Line>
 …
 </Line>
 < myns:GrandTotal>1200000.00</ myns:GrandTotal>
 </Process>

 </DataArea>
</ProcessPurchaseOrder>

Note that, by using the Substitution Group mechanism, the new,
extended "myns:PurchaseOrder" can legally use the newly-defined
"myns:GrandTotal", effectively plug-replacing the OAGIS
PurchaseOrder with an extended version.

A substitution-group-based plug-in mechanism is much easier to use and
maintain than other XML Schema mechanisms, and the resultant instance
documents are both cleaner and more easily understood. The alternative –
using typical XML Schema extension mechanisms – is much more
cumbersome to use and maintain. Extension of PurchaseOrder, for
example, would require the OAGIS user to import the entire
ProcessPurchaseOrder BOD and all of its parts, subparts, etc., into
"myns" and to subsequently maintain all of those types each time OAGIS
is changed. The practical application of this approach rapidly becomes
quite confusing, and the OAGI architects felt it to be an unnecessary
burden on the OAGIS user.

4.4 XML Schema Namespaces and OAGIS 8.0

Newly introduced in XML Schema (as compared to XML DTDs) – and new
in OAGIS 8.0 – is the use of namespaces and namespace prefixes. This
section provides an introduction to namespaces and then describes
OAGIS 8.0's use of namespaces.

4.4.1 Overview of XML Schema Namespaces

As mentioned above, the ability to define separate namespaces
supports the creation and management of separate sets of element
names (also, attribute names, type names, etc.), pertinent to various
domains of interest, without the risk of name clashes. For example with

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

30

separate namespaces one can define a Person's Address and an
Address to Congress without creating a name conflict. This is done by
creating separate namespaces to define the terms of each domain (e.g.,
People and Speeches), assigning a namespace prefix to each (e.g.
"person:" and "speech:").6 These namespace prefixes can then be used
to distinguish, e.g. person:Address versus speech:Address. In this
manner, separate vocabularies can be combined without risk of name
conflicts, e.g, a Person who lives at person:Address can present a
speech:Address to Congress:

 <CongressionalDocket>
 …

<Event>
<Presenter>

 <person:Name> … </person:Name>
 <person:Address> …</person:Address>
 </Presenter>
 <EventType><speech:Address/></EventType>
 </Event>
 …
 </CongressionalDocket>

Here, the parser has no confusion about which "Address" is which,
because they are from separate namespaces.

In addition, namespaces can build upon other namespaces, with the
terms and constructs of some commonly used namespace being
referenced by terms and constructs of another. If, for example, a
speech:Address was modeled as a richer type, it might refer to the
person who presents the speech:Address:

6 Namespace prefixes are shorthand names that can be substituted for full namespace names, to
be used in the Schema documents and XML instances to keep namespace-distinguished names
compact and readable. For example, the namespace for XML Schema is
"http://www.w3.org/2001/XMLSchema", and the typical namespace prefix is "xs:". It is much more
concise to declare an XML Schema element as "xs:element" instead of using the full namespace
name {http://www.w3.org/2001/XMLSchema}:element, which is what would be necessary without
namespace prefixes.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

31

<speech:Address>
<Presenter>
 <person:Name>Abraham Lincoln</person:Name>

 <person:Address> …</person:Address>
 </Presenter>
 <speech:Text>Four score and seven…</speech:Address>
 </speech:Address>

In this example, the Speeches namespace builds upon the People
namespace by building the element speech:Address using elements
person:Name, person:Address, etc., again with no confusion between
the two different Address elements (of two discinctly different types).

In this manner, a schema can incorporate concepts from a rich set of
domains, building upon existing knowledge and vocabularies. At the
same time, the origin of each concept is clear (because each has a
namespace prefix), and, for the same reason, the same words with
different contextual meanings can be used, side-by-side,
unambiguously.

4.4.1.1 Default Namespaces

The readability of an XML Schema can be enhanced by declaring a
default namespace, whereby the concepts in one namespace can be
referred to without using a namespace prefix. Any concept in a given
XML Schema document or XML instance document that has no
namespace prefix is assumed to have been defined in the default
namespace (or, if no default namespace has been defined, in "no
namespace"). In the example above, if the People namespace were
declared as the default namespace, the elements Name and Address
(without namespace prefixes) would be assumed by parsers to be the
ones from the "People" namespace.

Default namespaces can reduce the number of keystrokes required to
create an XML Schema document and can reduce the number of
characters that flow across the wire in an XML instance document, one
that would otherwise be peppered with namespace prefixes. Industry
standard practice, though, is to use namespace prefixes for all imported
schemas, making it clear which are externally-defined concepts and
which are user-defined concepts. Also, by declaring a default

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

32

namespace, the user is precluded from using "no namespace" (also
referred to as the null namespace), because a parser could not
distinguish between elements from the default namespace and elements
from no namespace.

4.4.2 OAGIS 8.0 and Namespaces

Like virtually all other XML Schema-based standards, OAGIS 8.0 relies
on namespaces to distinguish OAGIS concepts from concepts in other
domains. All concepts in the OAGIS standard are defined in the
namespace "http://www.openapplications/oagis" (referred to in this
document as "the OAGIS namespace").7 All elements, attributes, types,
etc., defined by OAGIS are declared in the OAGIS namespace, making it
clear to OAGIS users which concepts are and are not a part of the
standard, and, at the same time, protecting their names from clashing
with OAGIS concepts.

Those referencing the OAGIS namespace typically use the namespace
prefix "oa:" to distinguish OAGIS elements and types from elements and
types from other domains.8

For example, the type that defines an OAGIS BOD is typically referred to
as oa:BusinessObjectDocument; the specific BOD formerly known as
ProcessPO is now oa:ProcessPurchaseOrder (given, of course, that the
prefix "oa:" has been bound to the namespace
"http://www.openapplications/oagis").

4.4.2.1 Off-the-Shelf OAGIS and Namespaces

OAGIS users who use OAGIS without extending it do so by creating a
BOD instance document (xml file), pointing it to an OAGIS BOD XML
element from the OAGIS namespace. For example, a

7 While any schema-legal name (xs:NCName) can be used to identify a namespace, OAGIS uses
a full URI to identify the namespace (the OAGIS namespace could just as easily have been called
"OAGIS"). The use of the schema's URI has become standard practice in identifying
namespaces, especially for the namespaces associated with standards such as OAGIS.
8 The choice of namespace prefix is arbitrary; it can be any lexically valid name. An OAGIS user
could use the namespace prefix "o:" or "oagis:" or "OAGIS:" or "TheEBusinessStandard:", so long
as their choice of namespace prefixes is legal, and is mapped to the namespace
"http://www.openapplications/oagis".

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

33

ProcessPurchaseOrder BOD instance points to the relevant XML
Schema file, e.g.,

"http://www.openapplications.org/oagis/ProcessPurchaseOrder.xsd"

By defining no namespace prefix for the OAGIS namespace, the BOD
and all of its numerous parts are treated as being from the OAGIS
namespace.

4.4.2.2 Extended OAGIS and Namespaces

Those OAGIS users who want to extend OAGIS have a choice of
whether to create their extensions in no namespace or to define their
own namespace. Typically, only the "casual OAGIS extender", i.e., one
who extends OAGIS only by populating UserAreas, uses the null
namespace. In such cases, the OAGIS namespace must be declared
along with a namespace prefix; the user's elements and types, being in
no namespace, are the only ones that are allowed to be referenced
without namespace prefixes.

The typical OAGIS extender, though, creates either a specific vertical
extension – e .g., for use by the Ford Motor Company in its business
interactions, or an industry extension, e.g., across the entire automotive
industry. In either case, such extenders are required to each define a
separate namespace that defines names relevant to their respective
domains. This is the chief means that OAGIS extensions are intended to
be built (and built upon).

4.4.2.3 Extended OAGIS Namespace(s) Example

Consider a fictitious organization, the Automotive Industry XML Group
and their equally fictitious interchange standard, AutomotiveIndustryXML
which captures and encodes automotive industry concepts. The
Automotive Industry XML Group could (arbitrarily) assign a namespace,
e.g., http://www.AutomotiveIndustryXML.org/oagis to their standard.
AutomotiveIndustryXML, being an extension of OAGIS, draws in and
builds upon the OAGIS concepts (namespace). Each of the companies
affiliated with AutomotiveIndustryXML can use the
AutomotiveIndustryXML standard "off the shelf" (i.e., without extending

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

34

it), or may choose to extend it for use in their own standard. For
example, the fictitious company Cc: could extend
AutomotiveIndustryXML by adding its own, company-specific extensions
to the standard AutomotiveIndustryXML concepts, thus both embracing
the AutomotiveIndustryXML standard yet not being totally constrained to
AutomotiveIndustryXML's definition of, say, a WarrantyRepairOrder.

The layering of namespaces might look like this:

The AutomotiveIndustryXML namespace builds on concepts imported
from OAGIS; the Cc: namespace builds on both AutomotiveIndustryXML
and OAGIS concepts (elements, types, etc.). We refer to this as a
cascade, whereby concepts from OAGIS cascade to, e.g., an industry
extension, and these concepts cascade on to verticals, either extended
or not. Prior to OAGIS 8.0, a cascade like this was not possible; creating
a single extension to OAGIS was feasible, but was labor-intensive to
maintain and modify.

An example of the files involved in the layering might look like this:

http://www.openapplications.org/oagis

http://www.AutomotiveIndustryXML.org/oagis

http://www.CarCo.com/oagis

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

35

The OAGIS BOD definition is built from multiple files in the OAGIS
namespace; the file structure and inclusion scheme for the OAGIS files
are described Appendix A of this document.

Also note that this is a departure from prior OAGIS versions. In previous
versions, the standard means of extending OAGIS was to copy the set of
OAGIS files, (oagis_extensions.dtd and oagis_entity_extensions.dtd
which referenced your extension dtds) add extensions, share the entire
set of files with application builders (for enterprise-internal OAGIS

OAGIS BOD Definition
BOD: ProcessPurchaseOrder
Namespace: http://www.openapplications.org/oagis
Typical prefix: “oa:”
File: ProcessPurchaseOrder.xsd

IndustryA BOD Definition
BOD: ProcessPurchaseOrder
Namespace: http://www.openapplications.org/oagis/AutomotiveIndustryXML
Typical prefix: “ai:”
File: ProcessPurchaseOrder.xsd

XYZCorp BOD Definition
BOD: ProcessPurchaseOrder
Namespace: http://www.CarCo.com/oagis
Typical prefix: “cc:”
File: ProcessPurchaseOrder.xsd

Instance Document
BOD referenced: cc:ProcessPurchaseOrder
File: ProcessPurchaseOrder12322.xml
Namespace references (prefixes):
 http://www.CarCo.com/oagis (cc:)
 http://www.openapplications.org/oagis/AutomotiveIndustryXML (ai:)
 http://www.openapplications.org/oagis (oa:)

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

36

interchange) and/or with trading partners (for eBusiness transactions),
and, once these extensions have been incorporated by the relevant
parties, to transact business using that extended version.

OAGIS 8.0 introduces an approach that fits more with the "web model,"
whereby an authorized version of the standard schema is posted at a
particular web site, and those wishing to extend the standard do so in
another, distinct namespace. While it is not necessary for systems to be
"on the web" to use OAGIS, nor that the OAGIS schema be read
remotely if they are on the web, following this approach achieves a more
important goal – a pragmatic separation of concerns. With the OAGIS
standard encapsulated in a relatively stable namespace, and with
extensions clearly segregated and identified as to their purveyor(s), it is
clear to the user which standards and extensions they are reliant upon,
and is simpler for the separate parties (OAGIS and the extenders) to
revise their standards. Using standard XML Schema mechanisms, it is
possible for OAGIS, an industry, or a vertical, to upgrade their own
content and for that content to be integrated by those incorporating their
schema.

4.5 Extensions to OAGIS

OAGIS 8.0 preserves and modifies the existing form of extensibility –
USERAREA extensibility – and introduces a new kind of extensibility,
"Overlay" extensibility.

A key feature of the OAGIS standard is its extensibility. It has long been
the experience of OAGIS users that, no matter how forward-looking a
standard might be, the standard's creators cannot foresee all possible
uses and therefore all required content. A standard that is not extensible
can hamstring its users by preventing them from including necessary
content. They end up either making do until the next release cycle, or,
worse, they end up "temporarily" stuffing data values where they don't
belong. A widely used alternative is to create a very general schema that
is very open, yet offers little structure or guidance, and virtually no
validation of the content. Such an approach places a heavy burden on the
application developer to interpret and validate the content.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

37

A standard that is extensible provides the user with the ability to add
information that would otherwise not fit in the standard, either for
temporary use until incorporated into a future release, or for limited-scope
use (in cases where the extended information is of little interest/value to
the full set of the standard's users).

Either way, extensions do represent a variance from the standard, and all
participants that use the extended standard must recognize the
extensions. This compromise reduces the set of negotiated interchange
items to the relatively small set of extended items; the bulk of the standard
continues to represent a stable interchange contract.

Still, any extensibility scheme must also support the users of an extended
standard in their interchange and maintenance of extensions. If an
extension is embedded in the files of a copy of the standard, it will be
difficult for partners to accommodate and will make OAGIS version
updates labor-intensive to install. The mechanisms supporting OAGIS 8.0
extensibility have been designed not only with extensibility in mind, but
also with the goals that users' extensions 1) will be easily sharable with
interchange partners and 2) will accommodate OAGIS version upgrades
without significant additional labor.

4.5.1 Design Goals for OAGIS Extensibility

OAGIS extension mechanisms are somewhat complex in their inner
workings, but were designed with these principles in mind:

• User-defined extensions to OAGIS should neither require nor
depend on user modifications to any of the OAGIS Core xsd files.
To ease the transition between OAGIS releases, OAGIS Core xsd
files should be kept separate from user extension xsd files. In as
much as possible, the OAGIS/Schema user should be able to
easily replace the OAGIS core files without teasing apart any
intertwined extension definitions, and with no discernible user
impact (save for the unavoidable impacts of changes to extended
content).

• Regardless of the complexity of the underlying extension
mechanisms, the user should be able to follow a set of simple,

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

38

repeatable instructions for extending OAGIS, and should not have
to go through the painful exercise of determining which OAGIS files
to include, and in which order.

• Any extension of OAGIS must occur in a namespace other than
OAGIS. This allows the clear delineation of ownership between the
specification and any extensions. This preserves the separation of
the core standard from nonstandard or quasi-standard extensions,
clarifying to the OAGIS user the boundary between core and
extended content. This also helps OAGIS maintainers and
extenders in their management of change, knowing that changes to
OAGIS content will suffer no name clashes with their extended
content.

4.5.2 UserArea Extensibility

OAGIS versions prior to OAGIS 8.0 offered extensibility via the user area
mechanism, whereby extended content could be added in segregated
USERAREA elements, as child elements under the USERAREA element:

<USERAREA>
 <GTOTAL>12345.00</GTOTAL>
</USERAREA>

This practice is still supported in OAGIS 8.0, in the form of the new
UserArea element. Like its predecessor, the new UserArea extensibility
supports the extension of OAGIS by adding any user content (just so long
as it represents legal XML). One key difference is that any new concepts
must be defined in a separate namespace. A UserArea can contain
OAGIS components from other BODs that may be thought to be relevant
to the BOD being extended. To include these, no special treatment is
needed:

…
<UserArea>
 <SalesPerson>…</SalesPerson>
<UserArea>
…

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

39

However, if an OAGIS user also adds components that have not been
defined in the OAGIS namespace, they must be defined in a namespace
other than the OAGIS namespace, for example:

…
<UserArea>
 <SalesPerson>…</SalesPerson>

<ai:VehicleWarrantyExpirationDate>
…
</ai:VehicleWarrantyExpirationDate>

<UserArea>
…

A key benefit of these namespace prefixes is that they clearly distinguish
extensions from core concepts.

OAGIS 8.0 UserAreas typically appear as the last element in any OAGIS
component.9 Their use is entirely optional. If used, the UserArea can
contain any number of syntactically correct XML elements, so long as
each element has been defined in some schema; the OAGIS Schema, a
referenced industry and/or vertical schema, or in a schema defined and
referenced by the user.

With UserArea extensibility, it has been possible to extend OAGIS on the
fly, without having to wait for the release and distribution of a subsequent
OAGIS version that incorporates the extension.

4.5.3 Overlay Extensibility

A drawback of UserArea extensibility is that it relegates extended content
to being subordinate to the UserArea element – content that could
otherwise be regarded as having the same level of importance as existing
OAGIS content. OAGIS 8 recognizes the needs of industries and verticals
to extend the schema with elements that are legitimate peers of OAGIS
elements; that is, with extended content that is not forced to be
segregated under a UserArea. This type of extensibility has been referred
to as overlay extensibility, in that the extended content appears in line
with the OAGIS content. Using overlay extensibility, a GrandTotal element

9 Always as the last element of the core OAGIS definition, but before any extended content that
may occur as an Overlay.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

40

can appear at the same level as other content of equivalent importance,
not relegated to being subordinate to the UserArea:

 …
 <Item>…</Item>
 <Item>…</Item>
 <Item>…</Item>
 <GrandTotal>12345.00</GrandTotal>
 …

In OAGIS 8.0, by design, all Nouns, Noun Components, and global/shared
Components are overlay extensible. That is, any OAGIS Noun, any of its
components, and any globally reusable OAGIS Component can be
extended, appending new, namespace-prefixed content at the same level
of element nesting as other element content.

For reasons of both "clean modeling" and, more importantly, tractable and
efficient parsing, XML Schema requires that all extensions appear as the
last parts of a particular element's or type's content. So any extended
content will appear as appended content, with OAGIS-defined content
appearing first.

To emphasize the distinction between OAGIS core content and extended
content, namespace prefixes are also required for all extended content.
The result is that standard OAGIS content appears first (with or without
the OAGIS namespace prefix, depending on the user's preference)
followed by the content added by the first extender, followed by the
content added by the second, and so forth.

So, in the case of a Ford extension of the AutomotiveIndustryXML
extension of the OAGIS ProcessPurchaseOrder BOD, the content of the
OAGIS PurchaseOrder might look like:

<PurchaseOrder>
 <Header>…</Header>
 <Line>…</Line>
</PurchaseOrder>

An AutomotiveIndustryXML extension that adds the GrandTotal element to
the PurchaseOrder might look like this:

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

41

<ai:PurchaseOrder>
 <Header>…</Header>
 <Line>…</Line>
 <ai:GrandTotal currency="USD">43000.00</ai:GrandTotal>
</ai:PurchaseOrder>

meaning that a AutomotiveIndustryXML Purchase Order (as depicted by
the "ai:" prefix) contains a GrandTotal element (also defined in the
AutomotiveIndustryXML namespace), that has the value 43000.00 US
Dollars.

Now, if a company CarCo wanted to call out, for example, the total
destination charges in a PurchaseOrder, CarCo's extension to the
AutomotiveIndustryXML PurchaseOrder might look like this:

<cc:PurchaseOrder>
 <Header>…</Header>
 <Line>…</Line>
 <ai:GrandTotal currency="USD">43000.00</ai:GrandTotal>
 <cc:TotalDestinationCharges
 currency="USD">2150.00</cc:TotalDestinationCharges>
</cc:PurchaseOrder>

Note that the CarCo PurchaseOrder also includes
AutomotiveIndustryXML's GrandTotal element, because the Ford
PurchaseOrder extends the AutomotiveIndustryXML PurhcaseOrder.

Also note that, since Header and Line came from OAGIS and GrandTotal
came from AutomotiveIndustryXML – both higher up in the cascade –
these elements appear above the CarCo-specific extensions.10 While this
might not look exactly how CarCo might like to see it (i.e., they'd want the
GrandTotal element at the end), remember that this is an XML instance
document, used by applications and almost never seen by people. The
people, on the other hand, would see a made-for-humans presentation
(e.g., as transformed by a stylesheet) – such a presentation would
certainly need to accommodate the viewers' preferred presentation
ordering; XML instance documents need not.

10 The way that OAGIS overlay extension is implemented guarantees that the schema will enforce
this ordering.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

42

Note: OAGI recommends that applications sending and receiving XML
content not be reliant on the ordering of the elements (fields, compounds,
and components) within a given XML element. While it is important to be
aware of the representation of an XML document and it’s defining XML
Schema, the sequence in which these elements occur at a given level
should not be forced back to the business application. Granted the XML
parser must place the content in the correct sequence (according to the
corresponding XML Schema document) the business application should
not be forced to duplicate this sequence. This is especially important in the
eventuality that a future XML Schema Recommendation would support a
less constrained ordering.

OAGIS Overlay extensibility is made possible by the use of a substitution-
group plug-in design pattern. Each Overlay-extensible OAGIS element is
implemented as an XML Schema substitution group, allowing for each
element to be plug-in-replaced by an extended element from another
namespace.

4.5.4 Enumerations Inextensibility

Throughout OAGIS there are examples of attributes and elements that
have values drawn from a fixed, limited set of values. Simple examples
might include an attribute of the type DaysOfTheWeek, with legal values
Monday, Tuesday,… Sunday. We refer to these as enumeration types.
These are implemented in XML Schema by defining, for example, a string
type and restricting it by enumerating the legal values:

 <xs:simpleType name="DaysOfTheWeek>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Monday"/>
 <xs:enumeration value="Tuesday"/>
 <xs:enumeration value="Wednesday"/>
 <xs:enumeration value="Thursday"/>
 <xs:enumeration value="Friday"/>
 <xs:enumeration value="Saturday"/>
 <xs:enumeration value="Sunday"/>
 </xs:restriction>
 </xs:simpleType>

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

43

While OAGI endeavors to use enumeration types for only the most stable
of situations (i.e., where the enumerations are fixed and unlikely to
change), there are times when a particular enumeration might not have
been foreseen; and the use of the unanticipated value would be rejected
by any validating parser.

Say, for example, that the OAGIS schema were to rely on simple type
value enumeration to validate the correct use of international currency
codes, which are, in general fairly stable. If a new currency were to
appear, due to the formation of a new country or the restructuring of an
existing country's monetary policy, the new currency code would have to
be accommodated, until such time that the OAGIS standard could
incorporate the new code.

But no company should be prohibited from doing business in that
currency, just because a validating parser rejected its currency as being
unrecognized. Without some means of addressing this change the only
options for the OAGIS user would be to copy and edit the OAGIS schema,
(rendering it incompatible with other users' understanding of the standard),
or to use the value and disable validation of the instance documents
(requiring all who receive the data to do the same). Neither is an
acceptable solution.

Unfortunately, the XML Schema Recommendation, at the time of this
writing, supports no method of extending a set of enumerated values,
short of editing one or more files in the defining schema. This harsh
constraint has been explained as being necessary for the efficient
processing of enumerations. And it has profound ramifications on the
OAGIS design.

OAGIS 8.0 does provide a way to partially address this situation: the use
of the "semantically named element" design pattern, which provides an
extensible alternative.

Clearly, the best solution is to avoid the use of enumeration types for all
but the most stable of value sets (e.g., Yes/No, days of the week, etc.) and
to find alternative means of validating volatile content, either by using
more extensible constructs or by relegating validation to the application.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

44

4.6 Value-sets and Validation

XML Schema, as a typed language, provides the capability of checking
aspects of both the form and the content of the XML instance document –
to a much greater extent than was possible with DTDs. And the first
reaction of seasoned XML DTD users is typically to "nail down" everything
in sight, given the new hammer that they've just discovered. In many
cases, this allows the language that they're building to be more precise
and the XML instance more reliable than before. But in many cases, the
language that they've created can be inflexible in the face of expected
change.

In prior sections we discussed the inextensibility, in XML Schema, of
enumerated value sets; that any set of values that is represented as XML
Schema simple type value enumerations could only be expanded by
altering the original source file where the enumerations are declared.

In general, the representation in a schema of any set of values needs to
be carefully considered, especially if there is a strong desire to check the
validity of these values using a schema-validating parser. A solution that is
too open may place too much of a burden on the application to validate
that the values are correct; a solution that is too strict may result in a
show-stopping and irreparable rejection of the XML instance by the
validating parser.

How value-sets are represented (and validated) is directly related to the
volatility of the value-set, which can be rough characterized as:

1. Totally stable – the values in the value-set are fixed, either by
nature or by decree, with (statistically) no possibility of change.
Examples include "YesNoAnswer" (with values "Yes" or "No", but
no others), "USDaysOfTheWeek" (Monday…Sunday), and
"ThreeMajorStatesOfMatter" (Solid, Liquid, Gaseous).

2. Mostly stable – the values in the value-set are believed to be
stable, but there is a rare possibility that new values could be
needed, either at predictable or unpredictable times. Examples
include CountryCodes or CurrencyCodes, which are mostly stable,
but can change as the international political and monetary
landscapes evolve.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

45

3. Somewhat fluid - the values in the value-set are fairly stable, but
there is the expectation that new values will be needed, either at
predictable or unpredictable times. Examples include Party types
(ShipTo, BillTo, Carrier, etc.), ChargeCodes (Transport Costs,
Basic Freight, etc.)11

4. Highly volatile – the values in the value-set are, by nature, likely to
change, either by the frequent and unpredictable addition,
replacement, or removal of values, or because the values are
highly context sensitive and thus subject to change in different
business circumstances. Examples include ProductCodes,
CatalogItemNumbers, etc.

On the one extreme, only completely stable values sets should be
considered for representation using XML Schema simple type value
enumeration. In any other case, the need to extend the value-set simply
couldn’t be accommodated in a timely manner, and, until the next OAGIS
schema release, a validating parser will reject any new value. This is
because of the absolute prohibition in XML Schema of simple type
extension (and, thus, the inextensibility of simpleType value
enumerations).

On the other extreme, those value-sets that are known to be highly volatile
should be validated by the application(s), after a suitable Sync operation
has been performed. No schema-level enforcement should be relied upon,
due to the fluidity of the language that these values represent.

Other value-sets are likely to have their validation deferred to the
application. This requires that a Sync operation occur in order to
accommodate the synchronization of this application check.

Note: That it may be possible to do some of these checks outside of the
application by extending the constraints provided by OAGIS 8.0. Future
releases of OAGIS may also provide assistance in this area.

11 Note that in some standards, e.g., EDIFACT Charge Types, somewhat fluid and mostly stable
valuesets can be driven toward highly stable by the establishment of a standard set of values.
However, this approach often contains a widely used escape such as "Miscellaneous" to cover for
unanticipated cases; without a means of capturing a specific other values, the meaning and utility
of such valuesets rapidly diminishes. OAGIS encourages the use, when needed, of the more
extensible models to capture and validate the appropriate spectrum of values.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

46

However, there is a special yet common case where the value-set could
be represented using the OAGIS semantically named element design
pattern and validated by the parser. This particular approach to value-set
extensibility is covered in the next section.

4.7 Semantically-Named Element Sets

This design pattern is most appropriate where enumerations have been
used to describe the "type" of a thing, e.g., a Party Type (ShipTo, BillTo,
Carrier). In many standards, separate types are often combined into a
single, generic type, and each instance is distinguished by a "type"
attribute. So, for example, rather than creating a specific type for each
kind of Party, a generic Party element is defined and its "type" is
represented only in an enumeration (type="ShipTo").12

Given that new Party types are expected to be added by OAGIS
extenders, and given the fact that there is not a convenient way to extend
an enumeration in XML Schema, the OAGIS design team was faced with
a choice: either have such things as Party Type not be validated, or find a
means of extending OAGIS such that new Party types could be added by
the OAGIS extender and subsequently validated. OAGI has opted for the
latter.

In cases where a "type" attribute exists and is likely to need extending,
these types are instead represented as proper XML Schema elements –
elements that are of the same or a closely related (derived) type. Their
value-sets, rather than being enumerated sets of string values, are
captured in XML Schema Substitution Groups. Finally, these elements are
wrapped in a pair of tags named for the original (more abstract) type.

So, in the case of Party type, rather than having N tags named "Party",
each having a type="some party type":

 <Party type="Customer" active="false" oneTime="false">
 <Name>…</Name>
 <Currency>USD</Currency>
 <Address>…</Address>
 <Contact>…</Contact>
 </Party>
 <Party type="Supplier" active="false" oneTime="false">

12 This led to a relatively bloated generic type: the properties of any specific party type were
added to the generic.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

47

 <Name>…</Name>
 <Currency>USD</Currency>
 <Address>…</Address>
 <Contact>…</Contact>
 </Party>
 <Party type="Carrier" active="false" oneTime="false">
 <Name>…</Name>
 <Currency>USD</Currency>
 <Address>…</Address>
 <Contact>…</Contact>
 </Party>

there will now be a set of Parties, with the type of each captured in the tag
name:

 <Parties>
 <CustomerParty active="false" oneTime="false">
 <Name>…</Name>
 <Currency>USD</Currency>
 <Address>…</Address>
 <Contact>…</Contact>
 </CustomerParty>
 <SupplierParty active="false" oneTime="false">
 <Name>…</Name>
 <Currency>USD</Currency>
 <Address>…</Address>
 <Contact>…</Contact>
 </SupplierParty>
 <CarrierParty active="false" oneTime="false">
 <Name>…</Name>
 <Currency>USD</Currency>
 <Address>…</Address>
 <Contact>…</Contact>
 </CarrierParty>
 </Parties>

While this may seem odd at first, it has one key benefit:

• It is extensible and validatable under XML Schema – the prior way
is not.

Also, unlike its inextensible counterpart, the Substitution Group
implementation renders all group members accessible anywhere that the
group has been referenced. So, if an OAGIS extender such as
AutomotiveIndustryXML were to add the new party element
"ai:DealershipParty", that new party element would be available in all
OAGIS BODs used by AutomotiveIndustryXML, without any additional
work being done.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

48

To distinguish these semantically-named elements from other global
elements, their name takes on the suffix of their schema type definition
(you may have noticed that in ShipToParty, BillToParty, etc.).

To simplify application processing, all things in the substitution group Party
are grouped together and captured under the "Parties" element. This
simplifies the processing of a set of party-type things (//Parties/*), and has
the added benefit of reducing the element bloat of the parent element.

In a semantically-named element set, there is a grouping element, Parties,
which contains 0 or more elements in the substitution group Party:

The "Party" element, of type Party, is declared "abstract" and must be
substituted for, by any member of the substitution group "Party". So the
diagram above depicts that any member of the Party substitution group
(BillToParty, BrokerParty, etc.) may appear any number of times under the
Parties element. As substitution group members, each must be of the
same type (the type Party) as the substitution group's head element (the
Party element) or a valid derivation of that type. All of the members
depicted above are of the type "Party", so none adds anything special to
extend the Party type, which might defined as:

 <xs:complexType name="Party">
 <xs:sequence>
 <xs:element name="Name" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="PartyIds" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Currency" type="Currency" minOccurs="0"/>

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

49

 <xs:element name="Description" type="Description" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="GLEntitySource" type="GLEntity" minOccurs="0"/>
 <xs:element name="PaymentMethod" type="PaymentMethod" minOccurs="0"/>
 <xs:element name="Rating" type="Rating" minOccurs="0"/>
 <xs:element name="TaxExempt" type="xs:boolean" minOccurs="0"/>
 <xs:element name="TaxId" type="Id" minOccurs="0"/>
 <xs:element name="TermId" type="Id" minOccurs="0"/>
 <xs:element ref="Address" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Contact" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Attachment" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="UserArea" type="UserArea" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="active" type="xs:boolean" use="optional" default="false"/>
 <xs:attribute name="oneTime" type="xs:boolean" use="optional" default="false"/>
 </xs:complexType>

resulting in an XML instance that would look like this:

 <Party active="…" onetime="…">
 <Name>…<Name/>
 <PartyIds/>
 <Currency/>
 <Description/>
 …
 <Contact/>
 <Attachment/>
 <UserArea/>
 </Party>

It would be possible – even desirable – to create specialized schema
types to accommodate appropriate content. For example, a ShipToParty
type could be created as an extension of the Party type, adding the
element "LoadingDockHours" – relevant to the ShipToParty but not likely
relevant to other Party types. So the type ShipToParty could be derived by
extension from type Party, adding a LoadingDockHours field (of type
TimePeriod):

 <xs:complexType name="ShipToParty">
 <xs:complexContent>
 <xs:extension base="Party">
 <xs:sequence>
 <xs:element name="LoadingDockHours" type="TimePeriod"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Rather than adding these specific elements to the general Party type the
generic Party type remains simple, containing only those properties

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

50

common to all Parties; each specific party would have its own specific
properties (e.g., ShipToParty type with element LoadingDockHours).13

Finally, any OAGIS extender can add a new Party element of type Party
(or some legal derivation), add it to the substitution group Party, and it
would be available anywhere where Parties appear:

 <xs:element name="DealershipParty" type="oa:Party"
 substitutionGroup="oa:Party"/>

One final note: OAGIS employs a grouping element (not to be confused
with XML Schema groups) to collect semantic elements of the same base
type but with different names ("Parties" collects, e.g., ShipToParty,
SupplierParty, etc.). As discussed above, this is done to provide a hint to
applications as to which of the extended items are related and can be

13 Even though these may all be represented in a database table that recombines all of the
distinguished properties into a composite record, the data that goes into the table will be
appropriately differentiated – you won’t find a LoadingDockHours in a PublisherParty record,
because the XML won't allow it.

The new
ai:DealershipParty
element, available
everywhere where
Parties are held(!)

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

51

processed together. However, OAGIS recommends against using such
grouping elements for other elements, e.g., for repeating of the same type
and same name, such as "Items" grouping repeating "Item" elements. This
is thought to be an unnecessary redundancy, since all such items can be
retrieved using the element name ("Item") and thus do not need the extra
structure (Items/Item).

4.8 File Organization

OAGIS 8 BODs rely upon several resource files. These files are divided in
to directories that indicate the purpose of the files that they contain. This
design of the file structure arises from a number of design goals and
constraints.

First, the files are segregated into categories of OAGIS-defined content
and user-defined content. The directories and files are organized both to
separate various concerns/concepts and to facilitate the various OAGIS
8.0/Schema extension mechanisms. These mechanisms, and their
particular implementation in XML Schema, dictate that some files be kept
separate, even if it appears that some might benefit from being combined.

None of the OAGIS files should be modified by the OAGIS user. Doing so
will almost certainly render that deployment incompatible with other
OAGIS installations, and will make OAGIS version updates labor-intensive
to deploy. Extensions to OAGIS are made in separate directories and files.
See the subdirectories under the "OverlayExamples" directory for
examples of how to craft overlay extensions.

Appendix A in this document provides a list of all the directories and files
used in OAGIS 8.0.

4.9 Self-Documenting Schemas

Documentation that is collocated with an XML Schema document is more
accessible to the developers who need it, and much easier to keep
consistent with the schema. All fields, compounds and types make use of
the annotation capabilities of XML Schema to document their usage.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

52

OAGIS documentation has been generated directly from the annotations
within the XML Schema. The separately maintained Microsoft Word-
formatted OAGIS Documentation has been replaced by generated, html
documentation.

4.10 Validation Beyond XML Schema Validation

DTDs are known to provide limited definition of – and validation of – the
structure and content of an XML document. All information that cannot
have its integrity validated using DTDs must instead be validated by the
application; this is true of most OAGIS deployments prior to OAGIS 8.
While some OAGIS users prefer this, it does place a heavy burden on
application builders to understand and interpret the integrity rules for each
BOD and to track these rules as they change. Chances are good that
different vendors' applications will interpret these constraints differently.

In spite of the progress that XML Schema represents, a Schema-
validating parser still only performs limited structural validation. As such,
some types of BOD integrity cannot be checked by a schema-validating
parser, so other means of integrity checking are often necessary.

In OAGIS 8, it is still possible (and for some data, desirable) to have the
application validate the integrity of the BOD data. OAGIS BODs can also
be checked outside of the application using a combination of the BOD's
XML Schema documents (for structural validation) and OAGI-provided
integrity constraints (for most other validation):

BOD Validation – Simplified View

This is accomplished using nothing more than a standard Schema-
validating parser, a standard XSL processor and a stylesheet:

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

53

BOD Validation Using Standard XML Technologies

Note that even with this pre-validation of the BOD, it may still be desirable
for the application to perform some of its own integrity checks. However,
routine checking need not be duplicated in the application.

One possible architecture for this checking involves the use of a standard
schema-validating parser, coupled with a standard XSL processor, which
jointly validate the structure and semantics of the BOD:

Upon successful validation, the BOD can then be handed off to the
application for re-parsing (not validated this time) and use. For typical
BODs, redundant parsing will not impose significant overhead.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

54

For greater efficiency, a DOM-based parser and XSL processor can be
used:

In this case, the parser generates a DOM that, upon successful Schema
validation and integrity rule checking can be handed off to the application,
which can use the BOD's DOM form without reparsing.

In some cases, though, some BODs are too large to be efficiently re-
parsed or to be represented in an in-memory DOM. In such cases, it is
likely that a SAX-based approach will be necessary:

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

55

BOD Validation – SAX-event-based (large BODs)

In this case, a SAX-based Schema-validating parser will parse and
validate the BOD against it respective schema document(s). At the same
time, both the SAX-based XSL processor and the application will listen to
the SAX events; the XSL processor will apply the BOD integrity rules, and
the application will respond in its own fashion to the SAX events.
However, it is only when the parser and the XSL processor report success
that the application can commit to acting on the information collected
during the processing.

Regardless of which architecture(s) are chosen, it is possible for the
application to be run without any external validation of the BOD instance –
that is, with external validation disabled:

This comes at some risk, though, especially if the applications that interchange
the BODs can change and/or when the BOD(s) are interchanged with an

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

56

untrusted interchange partner. Operation will be more streamlined, but at the risk
of receiving incorrect and/or incomplete BOD data.

4.11 Parser & Tool Compatibility

All XML Schema documents and XML instance examples have been
validated against the following XML tools (in order from development to
run-time):

1) Xerces 2.0.1 (jars dated 4/5/02 or later), Apache (a production parser)

2) MSXML 4.0 (SP1 or later), Microsoft (a production parser)

3) XML Spy, v 4.3, Altova (an IDE)

4) XSV v 1.4, Henry Thompson (a development-time validation tool)14

Additional parsers and IDE’s to be tested are:

1) TurboXML 2.3, TIBCO (an IDE)

2) Schema Quality Checker, IBM (a development-time validation tool)

3) Oracle XML Parser, Oracle (a production parser)

OAGI has worked with Apache (Xerces), Microsoft (MSXML), Altova
(XMLSpy), and Henry Thompson (XSV), to correct errors in each
respective party's tools – errors that might have impeded progress in
deploying a fully usable OAGIS 8. In addition, OAGIS architects have
actively participated in the XML Schema Dev listserve, to determine the
correct interpretation of some of Schema's capabilities.

OAGIS users who encounter issues with the correct validation of OAGIS models
using the aforementioned XML tools may contact OAGI for guidance in getting
these issues resolved.

14 Henry Thompson’s XSV is widely regarded as a key reference implementation for XML
Schema validation, and is a well-exercised interpretation of the XML Schema Recommendation's
syntactic and semantic constraints.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

57

5.0 SUMMARY

While this document identifies the issues with OAGIS prior to version 8,
and identifies how these issues will be resolved in OAGIS 8, it is important
to remember the things that OAGIS does right:

1) OAGIS is extensible and we are expanding on that extensibility as we
move forward.

2) OAGIS is easy to read and understand both at the documentation level
and the DTD level. XML Schema itself is not quite as easy to read,
however we are making strides to retain this aspect of OAGIS even in
the XML Schema instantiation.

3) OAGIS is, and will continue to be, focused on addressing the needs of
the business analyst.

4) OAGIS has provided means of abstracting away much of the
complexity inherent in the underlying representation language (DTDs),
and endeavors to do the same in its XML Schema incarnation.

While the XML Schema project has been on the OAGI radar since 1999,
XML Schema has only been released as a W3C recommendation as of
May 02, 2001. Even then, it was unclear how all of the XML Schema
constructs would be interpreted by validating parsers, and equally unclear
how the various OAGIS extensibility mechanisms were to be implemented
under Schema. As tool support for, and expert knowledge of, the detailed
semantics of XML Schema increases, so does the OAGI's ability to
support OAGIS in a manner that addresses our design principles and
meets our objectives.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

58

APPENDIX A – OAGIS 8 XSD FILES & DIRECTORIES

This appendix provides a complete list and description of the files and
directories to be delivered with OAGIS 8.0 in XML Schema. (Subject to
change between now and final release).

1) OAGIS (directory)– the main OAGIS directory which contains the following.
These files/directories are not to be modified.

a) Resources (directory)– The OAGIS resource files that are used to build
the BOD Instance Schemas. The user must not modify these files.

i) Nouns (directory) – contains the individual noun files that define each
of the OAGIS Nouns. One of these files is used in each BOD instance.

ii) Verbs (directory) – the individual verb files that define each of the
OAGIS Verbs. One of these files is used in each BOD instance.

iii) Components.xsd – contains the type definitions for each of the
common Components and the instantiation of its corresponding global
element (needed for component extensibility).

iv) Enums.xsd – contains the OAGIS defined enumerated lists or value
lists.

v) Fields.xsd – contains the type definitions of OAGIS Fields and
Compounds.

vi) Meta.xsd – some of the meta-information that define core OAGIS
concepts.

b) BODs (directory) – Contains the individual OAGIS BODs as defined in
XML Schema and the correspond constraints defined in XSL. These are
the files that the OAGIS user's XML instance files point to as the defining
(and validating) BOD schema. The user must not modify these files.

c) BODConstraints (directory) – contains the support for applying the
XPath-based constraint expressions that are used to augment XML
Schema validation.

 OAGIS 8 .0 D E S I G N D O C U M E N T V E R S I O N 1 .1

COPYRIGHT © 2002 OPEN APPLICATIONS GROUP, INC. ALL R IGHTS RESERVED

59

i) Rules - (directory) – contains a file for each BOD that contains the
constraint rules in XPath for each BOD as defined in OAGIS.

ii) Generated - (directory) – contains an xsl file that applies the rules
to the BOD instance. These xsl files are generated by form the Rules
above.

d) BODExamples (directory) – Examples of OAGIS BOD instances (.xml
files). These files (and this directory) are not required for OAGIS to
function properly.

2) Documentation (directory) – contains the documentation for OAGIS in html
format. This directory contains both html and other directories that provide the
OAGIS 8.0 documentation.

3) Overlay Examples (directory) – contains examples of the directories and files
that an OAGIS user might create/modify in order to extend OAGIS.

4) Utility (directory) – contains software and scripts used for checking,
validating, parsing, etc., BOD instance (xml) files and user overlays. (See the
ReadMe file for more information).

.

